192 research outputs found

    "Almost stable" matchings in the Roommates problem

    Get PDF
    An instance of the classical Stable Roommates problem (SR) need not admit a stable matching. This motivates the problem of finding a matching that is “as stable as possible”, i.e. admits the fewest number of blocking pairs. In this paper we prove that, given an SR instance with n agents, in which all preference lists are complete, the problem of finding a matching with the fewest number of blocking pairs is NP-hard and not approximable within n^{\frac{1}{2}-\varepsilon}, for any \varepsilon>0, unless P=NP. If the preference lists contain ties, we improve this result to n^{1-\varepsilon}. Also, we show that, given an integer K and an SR instance I in which all preference lists are complete, the problem of deciding whether I admits a matching with exactly K blocking pairs is NP-complete. By contrast, if K is constant, we give a polynomial-time algorithm that finds a matching with at most (or exactly) K blocking pairs, or reports that no such matching exists. Finally, we give upper and lower bounds for the minimum number of blocking pairs over all matchings in terms of some properties of a stable partition, given an SR instance I

    Interferon regulatory factor-1 (irf-1) shapes both innate and cd8 + t cell immune responses against west nile virus infection

    Get PDF
    Interferon regulatory factor (IRF)-1 is an immunomodulatory transcription factor that functions downstream of pathogen recognition receptor signaling and has been implicated as a regulator of type I interferon (IFN)-αβ expression and the immune response to virus infections. However, this role for IRF-1 remains controversial because altered type I IFN responses have not been systemically observed in IRF-1 -/- mice. To evaluate the relationship of IRF-1 and immune regulation, we assessed West Nile virus (WNV) infectivity and the host response in IRF-1 -/- cells and mice. IRF-1 -/- mice were highly vulnerable to WNV infection with enhanced viral replication in peripheral tissues and rapid dissemination into the central nervous system. Ex vivo analysis revealed a cell-type specific antiviral role as IRF-1 -/- macrophages supported enhanced WNV replication but infection was unaltered in IRF-1 -/- fibroblasts. IRF-1 also had an independent and paradoxical effect on CD8 + T cell expansion. Although markedly fewer CD8 + T cells were observed in naïve animals as described previously, remarkably, IRF-1 -/- mice rapidly expanded their pool of WNV-specific cytolytic CD8 + T cells. Adoptive transfer and in vitro proliferation experiments established both cell-intrinsic and cell-extrinsic effects of IRF-1 on the expansion of CD8 + T cells. Thus, IRF-1 restricts WNV infection by modulating the expression of innate antiviral effector molecules while shaping the antigen-specific CD8 + T cell response

    Imaging the Space-Time Evolution of High Energy Nucleus-Nucleus Collisions with Bremsstrahlung

    Get PDF
    The bremsstrahlung produced when heavy nuclei collide is estimated for central collisions at the Relativistic Heavy Ion Collider. Bremsstrahlung photons with energies below 100 to 200 MeV are sufficient to discern the gross features of the space-time evolution of electric charge, if they can be separated from other sources of photons experimentally. This is illustrated explicitly by considering two very different models, one Bjorken-like, the other Landau-like, both of which are constructed to give the same final charge rapidity distribution.Comment: 9 pages revtex style, 9 embedded PS figure

    Phonon Hall effect in ionic crystals in the presence of static magnetic field

    Full text link
    We study phonon Hall effect (PHE) for ionic crystals in the presence of static magnetic field. Using Green-Kubo formula, we present an exact calculation of thermal conductivity tensor by considering both positive and negative frequency phonons. Numerical results are shown for some lattices such as hexagonal lattices, triangular lattices, and square lattices. We find that the PHE occurs on the nonmagnetic ionic crystal NaCl, although the magnitude is very small which is due to the tiny charge-to-mass ratio of the ions. The off-diagonal thermal conductivity is finite for nonzero magnetic field and changes sign for high value of magnetic field at high temperature. We also found that the off-diagonal thermal conductivity diverges as ±1/T\pm{1/T} at low temperature

    The Sigma 13 (10-14) twin in alpha-Al2O3: A model for a general grain boundary

    Full text link
    The atomistic structure and energetics of the Sigma 13 (10-14)[1-210] symmetrical tilt grain boundary in alpha-Al2O3 are studied by first-principles calculations based on the local-density-functional theory with a mixed-basis pseudopotential method. Three configurations, stable with respect to intergranular cleavage, are identified: one Al-terminated glide-mirror twin boundary, and two O-terminated twin boundaries, with glide-mirror and two-fold screw-rotation symmetries, respectively. Their relative energetics as a function of axial grain separation are described, and the local electronic structure and bonding are analysed. The Al-terminated variant is predicted to be the most stable one, confirming previous empirical calculations, but in contrast with high-resolution transmission electron microscopy observations on high-purity diffusion-bonded bicrystals, which resulted in an O-terminated structure. An explanation of this discrepancy is proposed, based on the different relative energetics of the internal interfaces with respect to the free surfaces

    Simulation of calcium phosphate species in aqueous solution: force field derivation

    Get PDF
    A new force field has been derived for the aqueous calcium phosphate system that aims to reproduce the key thermodynamic properties of the system, including free energies of hydration of the ions and the solubility of the solid mineral phases. Interactions of three phosphate anions (PO43-, HPO42-, and H2PO4-) with water were calibrated through comparison with the results obtained from ab initio molecular dynamics using both GGA and hybrid density functional theory with dispersion corrections. In the solid state, the force field has been evaluated by benchmarking against experiment and other existing models and is shown to reproduce the structural and mechanical properties well, despite the primary focus being on thermodynamics. To validate the force field, the thermodynamics of ion pairing for calcium phosphate species in water has been computed and shown to be in excellent agreement with experimental data

    Ab Initio Calculation of the Lattice Distortions induced by Substitutional Ag- and Cu- Impurities in Alkali Halide Crystals

    Get PDF
    An ab initio study of the doping of alkali halide crystals (AX: A = Li, Na, K, Rb; X = F, Cl, Br, I) by ns2 anions (Ag- and Cu-) is presented. Large active clusters with 179 ions embedded in the surrounding crystalline lattice are considered in order to describe properly the lattice relaxation induced by the introduction of substitutional impurities. In all the cases considered, the lattice distortions imply the concerted movement of several shells of neighbors. The shell displacements are smaller for the smaller anion Cu-, as expected. The study of the family of rock-salt alkali halides (excepting CsF) allows us to extract trends that might be useful at a predictive level in the study of other impurity systems. Those trends are presented and discussed in terms of simple geometric arguments.Comment: LaTeX file. 8 pages, 3 EPS pictures. New version contains calculations of the energy of formation of the defects with model clusters of different size

    A New Phase of Matter: Quark-Gluon Plasma Beyond the Hagedorn Critical Temperature

    Get PDF
    I retrace the developments from Hagedorn's concept of a limiting temperature for hadronic matter to the discovery and characterization of the quark-gluon plasma as a new state of matter. My recollections begin with the transformation more than 30 years ago of Hagedorn's original concept into its modern interpretation as the "critical" temperature separating the hadron gas and quark-gluon plasma phases of strongly interacting matter. This was followed by the realization that the QCD phase transformation could be studied experimentally in high-energy nuclear collisions. I describe here my personal effort to help develop the strangeness experimental signatures of quark and gluon deconfinement and recall how the experimental program proceeded soon to investigate this idea, at first at the SPS, then at RHIC, and finally at LHC. As it is often the case, the experiment finds more than theory predicts, and I highlight the discovery of the "perfectly" liquid quark-gluon plasma at RHIC. I conclude with an outline of future opportunities, especially the search for a critical point in the QCD phase diagram.Comment: To appear in {\em Melting Hadrons, Boiling Quarks} by Rolf Hagedorn and Johan Rafelski (editor), Springer Publishers, 2015 (open access

    C-axis lattice dynamics in Bi-based cuprate superconductors

    Full text link
    We present results of a systematic study of the c axis lattice dynamics in single layer Bi2Sr2CuO6 (Bi2201), bilayer Bi2Sr2CaCu2O8 (Bi2212) and trilayer Bi2Sr2Ca2Cu3O10 (Bi2223) cuprate superconductors. Our study is based on both experimental data obtained by spectral ellipsometry on single crystals and theoretical calculations. The calculations are carried out within the framework of a classical shell model, which includes long-range Coulomb interactions and short-range interactions of the Buckingham form in a system of polarizable ions. Using the same set of the shell model parameters for Bi2201, Bi2212 and Bi2223, we calculate the frequencies of the Brillouin-zone center phonon modes of A2u symmetry and suggest the phonon mode eigenvector patterns. We achieve good agreement between the calculated A2u eigenfrequencies and the experimental values of the c axis TO phonon frequencies which allows us to make a reliable phonon mode assignment for all three Bi-based cuprate superconductors. We also present the results of our shell model calculations for the Gamma-point A1g symmetry modes in Bi2201, Bi2212 and Bi2223 and suggest an assignment that is based on the published experimental Raman spectra. The superconductivity-induced phonon anomalies recently observed in the c axis infrared and resonant Raman scattering spectra in trilayer Bi2223 are consistently explained with the suggested assignment.Comment: 29 pages, 13 figure

    An efficient algorithm to calculate intrinsic thermoelectric parameters based on Landauer approach

    Full text link
    The Landauer approach provides a conceptually simple way to calculate the intrinsic thermoelectric (TE) parameters of materials from the ballistic to the diffusive transport regime. This method relies on the calculation of the number of propagating modes and the scattering rate for each mode. The modes are calculated from the energy dispersion (E(k)) of the materials which require heavy computation and often supply energy relation on sparse momentum (k) grids. Here an efficient method to calculate the distribution of modes (DOM) from a given E(k) relationship is presented. The main features of this algorithm are, (i) its ability to work on sparse dispersion data, and (ii) creation of an energy grid for the DOM that is almost independent of the dispersion data therefore allowing for efficient and fast calculation of TE parameters. The inclusion of scattering effects is also straight forward. The effect of k-grid sparsity on the compute time for DOM and on the sensitivity of the calculated TE results are provided. The algorithm calculates the TE parameters within 5% accuracy when the K-grid sparsity is increased up to 60% for all the dimensions (3D, 2D and 1D). The time taken for the DOM calculation is strongly influenced by the transverse K density (K perpendicular to transport direction) but is almost independent of the transport K density (along the transport direction). The DOM and TE results from the algorithm are bench-marked with, (i) analytical calculations for parabolic bands, and (ii) realistic electronic and phonon results for Bi2Te3Bi_{2}Te_{3}.Comment: 16 Figures, 3 Tables, submitted to Journal of Computational electronic
    corecore